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Modified diffusion-limited aggregation simulation of electrodeposition in two dimensions
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A modified diffusion-limited aggregation model that includes a uniform drift simulates the process of
electrodeposition. Through a systematic variation of the model's parameters, aggr@etawdeposils
grown under different simulation conditior(experimental conditions of the voltage, current density, and
concentratiopndevelop as open dendritic or as compact mossy forms. The resulting aggregate morphologies are
characterized by geometric quantities derived from the aggregate particle position distribution. Power laws
relate the geometric quantities to each other. Ohm'’s law is obeyed to lowest order in the aggregate surface
curvature where the curvature is an effective conductivity. The distribution of open sites and its moments,
which are geometric quantities, are introduck®t1063-651X97)15908-4

PACS numbg(s): 81.10.Aj, 82.45+z, 81.05.Bx

[. INTRODUCTION are derived from the aggregate particle position distribution.
These include fractal dimension, density, aggregate surface
The growth of metal aggregates by electrodepositiormass exponent, average aggregate surface curvature, and the
[1-4] is simulated using a modified diffusion-limited aggre- probability density of open sites, or neighborhood pattern
gation(DLA) [5,6] model. The DLA model is well suited for distribution, and its moments, which will be introduced here.
simulating electrodeposit growth since it can be modified toBoth qualitative and quantitative information about elec-
include the electrodynamic transport processes important todeposit growth morphologies is obtained.
this problem. In the original DLA model a particle pursues The modified DLA simulation procedure in two dimen-
an unbiased random walk in the bulk and when it arrives asions (2D) will be described in detail in Sec. Il, and the
the surface of the growing aggregate it attaches with a probconditions under which the simulations were made will be
ability of unity. A fractal or dendritic aggregate growth pat- given. In Sec. Il the process of electrodeposition and the
tern results that effectively predicts certain dendritic mor-simulation model will be connected. In Sec. IV the open site
ph0|ogies of e|ectrodep03its grown in thin horizontal |ayersdi$tributi0n will be defined and asymptotic simulation results
[7-12). A modified DLA model that includes a uniform drift Will be given. These include plots of aggregate growth along
[13—-16 and an adjustable attachment probability can alsdvith results for the open site distribution and other geometric
simulate the growth of compact mossy aggregates. It haguantities. A detailed discussion of the observed types of
already been demonstratgti7—19 that modified DLA-type ~ aggregate morphologies follows in Sec. V. Section VI is the
simulations yield useful information regarding the evolutionconclusion.
of crystal morphologies. The model investigated here should
lead to a better understanding of the processes active during
electrodeposit growth and their effects on the resulting elec-
trodeposit morphologies. The geometry of the modified DLA simulation is shown
In the model, bulk(liquid) electrolyte diffusion and mi- in Fig. 1. The initial state of the simulations is a horizontal
gration are simulated using biased random walkers whiclseed line of particles. A source line for new walkers is ini-
represent the species to be deposited. The bias is charactéglly offset ¢ lattice spacings from the seed line. It is then
ized by an adjustable drift distané which representR\ ¢, displaced so as to remain at leastabove the growing ag-
the magnitude of the applied potential. Surface attachmerdregate. A fixed source line offset=15 was used through-
(including the reduction reactigns included in the model out these simulations and was found to adequately model
via the introduction of an adjustable global sticking coeffi-aggregate growth from a dilute electrolyte at all drift dis-
cient x, which represent§/|A ¢|, wherej is the current den- tancess lattice spacings considered hé@&g).
sity. The electrolyte bulk concentratianis controlled by an A walking particle initiated at a random point on the
adjustable source line offset[20]. source line pursues a biased random walk in the bulk. The
Through a systematic variation of the simulation param-walker jumps to an open site and then drifts a fixedown-
eters§ and « at a fixed value ofor (thermodynamic condi- ward toward the seed line or the aggregate surface, again
tions of A¢ andj at fixed c), the simulated electrodeposits landing at an open site. Jumps from a site adjacent to the
develop as open dendritic or as compact forms. The transsurface have the sanaepriori isotropic jump probability as
tion from compact to dendritic morphologies is seen to arisgumps in the bulk. When5>1 the drift downward is com-
as a combined result of the bulklectrolyte diffusion and pleted gradually so that if the walker becomes adjacent to the
migration and the bulk(electrolyte¢ aggregate(electrode- aggregate surface the drift ceases.
posiy interfacial kinetics. The characterization of the mor-  On its arrival at an open or unoccupied site adjacent to an
phologies of the aggregates is the emphasis of this studyccupied site in the seed line or the aggregate surface, the
This is done using geometric quantities of the aggregates thatalker attempts to attach. The probability that the walker

1. MODIFIED DLA SIMULATION

1063-651X/97/564)/431711)/$10.00 56 4317 © 1997 The American Physical Society



4318 SUSAN C. HILL AND J. IWAN D. ALEXANDER 56

Ill. ELECTRODEPOSITION AND THE SIMULATION

MODEL
A. Bulk transport

. sSouce The modified DLA simulation model and the process of
g B g electrodeposition are connected in this section. Transport in
=S SN E the electrolyte bulk is related to the biased random walks in
s = 5 the modified DLA simulation. The drift distanc& controls
(é (; the bias and represents the magnitude of the overpotential.
S L ks The biased random walks satisfy the discrete Smoluchowski
= — = equation[21].
@ @ In a uniform electric field the transport of ions in the
2 Mg 2 electrolyte bulk occurs by diffusion and migration with a
2 > 2 constant drift velocity. The transport is described by a para-
& o bolic differential equation derived from the Nernst-Planck

N equation[24,25
Jc 5
ectrodeno E=DOV c—vy-Vec. 1)

FIG. 1. Modified DLA simulation geometry in 2D illustrating a Here the concentratioa is assumed to be dilute aral, is
typical path of a random walker that reaches the surface. the bulk diffusion coefficient. The constant drift velocity
wherev 4= |vy| is proportional to the implied force

joins the aggregate is determined by the sticking coefficient

x. A random numbemw, O<w=<1, is generated, and i

<k, the walker attaches. <1, the walker may fail on its v4= Handl|El = pandl
first attempt to attach. It may then diffuse on the aggregate

surface and make repeated attempts to attach until it ﬁna"}fvhereq is the charge on the iony..is the absolute ionic
i abs
succeeds or else returns to the bulk. If it returns to the bUIkmobiIity, and| is the cell size.

it may reach a discard line, at which point it is discarded. A Migration and diffusion of an ion in the electrolyte bulk

discard line offset a fixed ten lattice spacings above theye modeled in the modified DLA simulations by a biased
source line was adequate and consistently allowed for thg,ngom walk. The bias is characterized by the drift distance
loss of walkers at smalb<1. In either case of the attach- g The probability that a walker undergoing a biased random

ment or the discarding of the walker, a new walker is startedyalk can be found at the locatiay afterk steps ig16]
and the procedure is repeated until a preset aggregate growth
height is reached. 1
Th_ese are small mass, small jume, f'and small radius of U(re kr) == 2 U(re_yq,(k=1)7). (3
gyration simulations. The lateral dimension of the aggregate ¢
growth in the direction perpendicular to the drift direction
was fixed at 58 lattice spacings. Periodic boundary condiThe summation in Eq(3) extends to all occupied sites at
tions are imposed at the side boundaries. There are twlocationsr,_; from which by a single jump and drift it is
phases of aggregate growth: At low growth heights there ipossible to arrive at the locatiory in one step where,
an initial growth phase in which transients occur that is fol-=r,_,;+a+d. The vectora is an unbiased random walk
lowed by an approach to asymptotic growth. To compare thevith equala priori jumping probability to any of the four
different simulated morphologies, it is important to ensurecorners of a square wherg_; is at the center of the square.
that sufficient aggregation has occurred beyond the growtfihis square is oriented diagonal to the axes of the underlying
transient. Growth to a height of 39 lattice spacings was adsquare lattice which has lattice spacigbut the center and
equate since beyond that aggregate morphology changése corners of the square do not have to coincide with lattice
were insignificant. points. The vectod is the uniform drift superimposed on
The simulation parameters used for the growth of aggreeach step of the random walk and is due to the drift velocity
gates included fractional drift distances in the range® imposed by a uniform external electric field in a time
<1 and integral drift distances in the range@<4. Loga-  which is the mean time between collisions and will be taken
rithmically spaced sticking coefficients were used in theto be one Monte Carlo step. The constaris a normaliza-
range 0.0x «=<1. For off lattice walks, wher<1, fractal tion factor.
dimension saturates and aggregate morphology apparently A connection can to be made to EHg) by expanding Eqg.
no longer changes much when<0.05. The saturation may (3) in a Taylor series. Such an expansion is valid so long as
represent the onset of some new morphological type or imax@,d) is smaller than the radius of convergence of the
may merely be the point of failure of the simulation. If the series. On evaluating the limits asanda go to zero, the
latter is true, at very smalf the simulation should be modi- Smoluchowski equation for the case of a constant, spatially
fied to include a locally determined sticking coefficient. independent force results:

Ao

| 1 (2)
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U
W=D0V2U—Vd~VU, (4 y(7,1).

(€)

Fpo ] . r +2Vm/NkBT
NksT o DoFco/jo r

where the timé=kr. The diffusion coefficienD, and mag-

nitude of the drift velocityv4 are[16
Wa [16] Herer is the electrodeposit surface radius of curvataggs

a2 the bulk concentration in the electrolytg, is the exchange

Do=lim —, (5  current densityV,, is the molar volume of adsorbed ions at
0 27 the electrodeposit surface, and the surface free energy is
a0 The reduction reaction of E¢8) is an activated process,

and the first term in Eq(9) is due to the activation overpo-
. d tential where the dependence jobn # is given by a small
vg=lim . () tentia ep jobn 7 is given by |
0T argument expansion of the Butler-Volmer equation
a—0 [24,27,28. The second term in EqQ) is due to the diffusion

e s ) , . (or concentrationoverpotential which occurs because there
The drift distance simulation parametérwill be propor- s 5 concentration gradient at the surface of the cathode due
tional tovy, which is proportional to an externally imposed ¢ depletion of the reacting metal id84,2§. According to
uniform electric field and, hence, to the applied potential. - Nernst's law, the concentration gradient gives rise to an
Whether the diffusive term or the migration term is domi- gyerpotential. The radius of curvatune, is an effective re-

nant in the Smoluchowski equation depends on the relativgjs;ivity and the diffusion and activation overpotentials com-
magnitude ofvq andD,. The Peclet numbd©6] is defined  pine to form an equation that is basically Ohm’s law.

as The third term in Eq(9) is due to the overpotential from
the Kelvin effect29,30. At the tips of protrusions, diffusion

p _Ud a= E 7) is spherical and a shorter diffusional path exists between the

€ Do a’ surface and outer plane of the diffusion layer and deposition

is therefore faster than at the flat part of the surface or at
Bulk diffusion will still be important in comparison to drift depressions. This leads to an accentuation of the potential at
providedd=<a/2 or P,<1. Asd is increased abova/2, the ~ Small radii on the electrodeposit surfe{de-3]. If a potential
transport becomes increasingly more and more ballistic. A¥ imposed across the surface, the surface free energy de-
long asd<a, the probability is nonzero for escape to a dis-Pends on the magnitude of the applied poterite]. The
tance away from the aggregate surface limited only by th&urvature of a highly curved surface may also affect the sur-
size of the system. Whed approaches the lattice spacing face free energy29-33. Equation(9) is valid at smally
a andP, approaches the value 2, a bifurcation in the numbefi-€-, in the linear regime of the Butler-Volmer equation
of available transport directions occurs from one direction to A reaction that is diffusion controlled has a rate that is
two directions. Wherd=a, the walker can only move in a limited by the arrival of ions at the electrodeposit surface. It

direction toward the aggregate surface and the attachment §&n be assumed that under this condition the total sticking
deterministic. probability of the ions undergoing reduction and attachment

to the electrodeposit surface is unj3,34. This will be the

case wherj is greater than or equal to the diffusion-limited

current density, =DgFcy/L, whereL is the diffusion layer
The surface kinetics, reduction reaction, and attachmerthickness. When the<j, , a sticking coefficient can be de-

in the electrodeposition process can be described by a welfined as the ratidk =j/j,_, but if j>j , thenK=1.

known macroscopic electrochemical equation due to Barton The sticking coefficienK has a physical counterpart in

and Bockris[1-3]. In this case, the sticking coefficiemt the ratioj/|7|. When»=0, thenj=0 andL diverges in the

represents the ratio of the current density to the magnitude afense that the diffusion layer extends throughout the bulk of

the overpotential. An elastic boundary conditi22,23 of  the electrolyte and is only limited in extent by the size of the

the Smoluchowski equation is equivalent to the Barton-system. Asy is increased from zerd, decreases monotoni-

Bockris equation in a certain limit. cally [16]. Now K=Cj/|5|, whereC is a proportionality
The overpotentialp=A¢—A ¢, is the difference be- constant. The simulated sticking coefficienill be propor-

tween the electrode potentidl$ and the equilibrium elec- tional toK.

trode potentialA ¢, for the reduction reaction In the modified DLA simulations, the probability(r,t)

at locationr after a timet will be a solution of the Smolu-

chowski equation, Eq4), subject to given boundary condi-

tions. The sticking coefficier for attachment to the aggre-

whereM T is a univalent metal ione™ is an electron, and gate surface[5,6,22,23 is included in the boundary

M is the reduced metal atom. In the modified DLA simula- condition by imposing a mixed or elastic boundary condition

tions A =0 because the reaction occurs at drift distanceat the aggregate surface. For this case, withKD<1, the

6=0. The convention that is observed here is that0O is  boundary condition i$23]

associated with>0, wherej is the cathodic current density.

The Barton-Bockris equation is the sum of the overpotentials

due to activation, diffusion, and the Kelvin effect and is KU|s+ (1= K){Psco¥9U|s—an-VU|g=0. (10

B. Attachment kinetics

M*+e =M, (8)
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<i2>=3.59
D=1.66
p =0.30
r =1.7
K=1.0
<i2>=3.23
D=1.70
p =033
r =2.1
Kk =03
? FIG. 2. Aggregate growth at a growth height
<i2>=3.00 n=39. The drift distances aré=0.0 (left) and
D=1.71 8=0.25(right).
r =25
K =0.125
<i?> =256
D=176
p =0.38
r =3.7
K =0.05

Here 6 is the angle between the normal to the aggregatéV. GEOMETRIC QUANTITIES OF THE AGGREGATES
surface and the drift direction, which are not necessarily par-

oo A. Introduction
allel on an arbitrarily shaped boundary. In general, over the

boundary layerP. will be nonzero. Aggregate growths are shown in Figs. 2—4. The sticking
Equation(10) can be rewritten as coefficientk and drift distance’ vary over the plots. Details
of the aggregate morphology will be discussed after
Y Uls 1 asymptotic simulation results are presented for some geomet-
2 an-VUl.  P.costtKI(1-K)' (1) ric quantities.

The probability density of open sites, or neighborhood
) . L pattern distribution, and its moments are useful for charac-
ngg the inverse of the logarithmic derlvatlve of the.prob- erizing the morphologies of the aggregates grown in the
ability at the aggregate surface has introduced an adjustab, odified DLA simulations. The number of open or unoccu-

e o i o e e e e iy ies hat re siacent 0 an occupied sie<atS
99reg ) =1,2,... N, in the aggregatéd,(rg)=0,1,2,3, is a discrete

ing particle becomes adjacent to the surface of the growin 4 ble which off Il-defined statistical d
aggregate in the modified DLA simulations, the drift cease andom variable which oflers a well-detined statistical de-
scription of the smallest clusters of particles from which the

anduvq4 and, henceP,, are zero. AtP,=0, Eq.(11) is X ;
aggregates can be built. In 2D on a square latiticg) =0
when the occupied site at is fully surrounded by nearest-
A . e ) s T
=—41. (120  neighbor occupied sites. The maximum valuei@fs) =3
a because the site must be connected to the aggregate growth.
Each of the four values dfrg) is associated with a particu-
This expression is essentially the Ohm’s law limit of £8),  lar neighborhood pattern that can develop about a given oc-
which includes the resistivity associated with the processesupied site in the aggregate. The four neighborhood patterns
of activation and diffusion. To lowest order, the elasticin 2D are shown in Fig. 5.

boundary condition ensures that Ohm'’s law is obeyed on the The reduced open sites probability densiy(i), i
aggregate surface. =0,1,2,3, is the distribution of the four neighborhood pat-

1
K
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<i2>=3.53 <iZ>=3.50
D=1.67 D=1.69
p=0.28 p=0.30
r=1.6 r=1.6
k=10 L Kk=1.0
ik, lgg g A7)
<i?>=267 <iZ>= 2.18
D=1.77 D=1.81
p=0.40 p=0.50
r=35 r =6.9
k=0.3 k=03
. . FIG. 3. Aggregate growth at a growth height
<i>=2.05 <i?>=1.33 n=39. The gr?ft gistar?ces ar§=0.g (left) andg
D=1.83 D=1.91 5=0.75 (right)
r=6.1 r=17.1
k=0.125 K=0.125
<iZ>=1.49 <i2>=0.96
D=1.89 D=1.94
P=0.70 | gut p=0.83
r=10.9 #d r =36.2
K =0.05 Kk =10.05
0=05
terns for the entire aggregate at given timeThe expecta- =1.0 for various sticking coefficients. This figure shows
tion values ofP,(i) which are most useful for examining the o(i) for single aggregates and is a typical example of the
morphology of aggregates are the mean open sites behavior ofa (i) with the simulation parameters. Initially,
5 the monolayer seed line is flat so that the aggregate is made
) . up solely of vacancy sites witR(i=1)=1 andP(i)=0, i
<'>n:i=20 IPn(i), (13 —0,2,3. Initially, (i) and (i?) are unity ando(i) has an
initial value of zero.
the mean square open sites Figure 6 shows the occurrence of two phases of aggregate
growth. At low growth heightgless than ten lattice spacings
" 3 o in this examplg, there is an initial growth phase in which
(i >:ZO 1Py(i), (14 transients occur that is followed by an approach to
o asymptotic growth. The overshoots in théi) transients are
and the variance of the open sites distribution nearly uniform in their magnitude and duration for the simu-
lation parameters considered. These reflect the development
var(i),=(i%n—(i)a. (15  of a characteristic rough morphology as the flat initial con-

dition is being forgotten. The oscillations that occur after the

Properties of the mean square open sftésare given in the initial growth phase damp out on averaging over several ag-
Appendix. The valug(i?)=1 will be taken to distinguish gregates. By a growth height of 39 lattice spacingd) has
between dendritic and compact morphological phases. Theeached an asymptotic value for almost all sets of simulation
observed power laws relating?) to other geometric quan- parameters considered. The fractal dimension(fd con-
tities then determine certain morphological crossover valuesidered as functions of growth height, also reach asymptotic
of those quantities. Although the choigé)=1 is somewhat values at this stage, except perhaps at the higheSimula-
arbitrary, the observed crossover fractal dimension andions with much larger geometries confirm that the gross
crossover density are consistent with the onset of a compagtorphology of the aggregates changes little with further in-
morphology. creases in their mass or radius of gyration. Results obtained

The standard deviation of the open sites distribution isat this growth height appear to be adequate for the analysis
a(i) where var()=o(i)2 In Fig. 6, (i) is plotted as a of the asymptotic interrelationships among and between the
function of aggregate growth height at a drift distanfe geometric quantities and the simulation parameters.
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<i¢>=23.09
D=1.71
p=0.31
r=4.0
Kk=1.0
<i2>=1.48
D=1.89
p=0.70
r=7.6
k=0.3
. . FIG. 4. Aggregate growth at a growth height
<ie>=079 <> =062 n=39. The drift distances aré=1.0 (left) and
D=1.96 D=1.97 5=4.0 (right).
p=0.87 p=0.90
r =58 [yl r=125
K=0.125 g K=0.125
<i2>=0.34
D=1.99
p=0.95
r=125
Kk =0.05
B. Mean-square open sites, fractal dimension, and density The fractal dimensio is estimated statistically because

of the relatively low mass and radius of gyration of the ag-

: . . : . . gregates. The distribution d@ is obtained for a very large

as a function of Smk'ig coefficient at various drift dis sample of rectangular boxes that have a range of areas and
tancesd. The data fork \2'3 are used to gzstlmate the cross-|ncations, and it is sharply peaked. The averBgeorrelates
over sticking coefficient”, found Wh?n<' )=1, by Inter- - \ell with D obtained from plotting IN(R) as a function of
polat|on for6=0.75 and by extrapolation fa¥<0.5. In Fig.  |nR whereN is the mass of the aggregate. The denpityf

8, k* distinguishes the morphological phases of the aggrean aggregate is calculated from the known valuesl aind
gates. Asé goes to zero, the estimated >0, indicating that p.

a 2D solid could be grown even in the absence of an applied
electric field. Foré<1, «* is a nearly cubic function o 20—
and then for6>1 it slowly increases. In the limi§ goes to

In Fig. 7, the mean-square of the open sit€s$ is shown

LI S S St R Ay AR e B S I B B S

=1.0 1

infinity, k* may approach unity and Eden or ballistic clusters 0 o— k=10 1
[35] should result. 15 —0—x=03 ]
-0 - x=0.1 1

. k=003 ]

X [e) i 1.0 n

| -0 ———0 —1

T e

| | |
X—S—X X—8—X 0—S8—X 0—S—0
l I | I
X X X 05

i=0 i=1 i=2 i=3
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S = Site of interest
X = Neighboring occupied site Growth Height
O = Neighboring open site
FIG. 6. Standard deviation of the open sites distributign) as
FIG. 5. Neighborhood patterns in 2D. The open sites variable is function of aggregate growth height and various sticking coeffi-
i cientsk. The drift distanced=1.0.
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FIG. 9. Mean-square open sit¢&?) as a function of fractal
FIG. 7. Mean-square open sit¢&) as a function of sticking dimension 2-D from aggregates grown over a range of sticking
coefficientx and various values of the drift distanée coefficientsk and three different values of the drift distanée

The mean-square of the open sit@$) is shown as a ing squared. The observ@f andp* are near these values.
function of 2—D in Fig. 9. The aggregates represented in theThe DLA resultD = 1.66 obtained withc=1 andé=0 gives
plot were grown over a full range of and «. The log-log a minimum value ofp=0.3 in the simulation results with
plot is essentially linear except possibly at the lowlgsand  fairly low-mass aggregates.
indicates the power law Plots of p as a function ofk at constants are shown in

Fig. 10. Two trends in the variation @fare apparent in the
<i2>:[ (2-D) r plots. First,p increases systematically asincreases, but
(2—D%*) when 6>1, p increases very slowly withs. Second, as¢
decreasesp increases. Sinc&=cj/|y|, this means that at
The crossover fractal dimensid@ is found when(i®)=1.  any constant overpotentiédrift distancé the density will be
The fit parameters for the full data set @p¢ =1.938 and highest at the lowest current densities.
0=0.6934. A log-log plot of(i?) as a function of *p is

very similar to the plot ofi2) versus 2-D, indicating the C. Average aggregate surface curvature
power law

(16)

The average curvaturerlis a simple average of the local

1-p) |¢ curvatures of surface sections of aggregates grown over a

o | (I=p ; ;

(i9)= a9 (17)  range of random number seeds. Lagrange interpolating poly-
P nomials[36] are fit to the surface sections and then used to

estimate their local curvatur¢87]. For oblate parabolic sur-

- ! face sections, relatively accurate local curvature estimates
and the exponer=0.7669. The values_of these f!t Param- ,re obtained from three-point fits to the width and height of
eters are roughly constant over the entire simulation paramy . <.rface section

eter set. - : . .

. . . . The variation of mean-square open sit€® with r was
bitr'?irtwg;il? ;CQE:OQ;; deel:lt\alic;téfr_eg_scz)ll(t:].:s, nflvo\l\?r?ecr);?;{e examined for both 2D hemispherical solids with dengity
densi)t/ has units of tr?e numb;r (;f articfe; or lattice Spac- 1 and for simulation results with varying drift distanée

y P P PaCnd sticking coefficientk. The following power law was

found relating(i®) tor:

The crossover density* =0.8189 is found wheri?)=1

0.3 , :
Dendrites 10— ' - T ]
C 5 1
02} . 0.8 ——0 ]
i —0—05 ]
“ ——1.0 |
06 —¥—40 7
010 . e C ]
Compact 04l b
02k ]
0 1 L 1 L J
o 1 3 4 i .
0 ! P | 1 L 1 " Lo
i 0.1 _ 1.0

K
FIG. 8. The crossover sticking coefficiemt, shown as a func-
tion of drift distances, separates the dendrite and compact morpho- FIG. 10. Densityp as a function of sticking coefficient and
logical phases. different drift distances.
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FIG. 11. Mean-square open sitg$) as a function of aggregate
radius of curvature from aggregates grown over a range of stick-
ing coefficients at drift distances<1.

FIG. 13. Fits of the modified DLA simulation data to Ohm'’s law
at a drift distance’=0.75 and to a modified Barton-Bockris equa-
tion at §=4.0. The radius of curvature is and « is the sticking
r*\x coefficient.

<i2>=(7 ! (18)

13 is good. This is a lowsfit that includes some largedata

andA is of order unity. The Ohm'’s law fit fo6=4.0 is very

hemispherical solids. The crossover raditisis found when bad._ !nstead, the fit f96=4.0.shown in Fig. 13 is to a
modified Barton-Bockris equation that includes surface-free

(i%)=1. A linear relationship betwee(i?) and 1f is pre- : : : : ,
dicted in the Appendix. A model calculation that assumes gnergy corections and is a cubic functionrofOhm’s law

: Lo : . be adequate for the low-data where there may be
linear falloff of the density in the expression f6r?), Eq. may R e
(A4), gives the result* =4.828, complete activation and diffusion control. At the largé&r

Log-log plots of(i2) as a function of are shown in Fig. transport is ballistic, the Kelvin effect is important, and the

11 for 5<1 and Fig. 12 fors=1 over a range ok. The reduction reaction is the rate limiting step.
simulation results indicate the same power law as in Eg.

(18). The power-law-fit parameters are fox<1 (Fig. 11,
overall data setr* =33.133 andy=0.4236, for6=1 (Fig.
12) r*=4.702 andy=1.094, and for6=4 (Fig. 12 r*
=09.050 andy=1.485. Whens=1, the results for* andy
are consistent with those for 2D hemispherical solids.

In the modified DLA simulations, the average radibf

the aggregate surfaces seem to be fixedStand « through
some quasiequilibrium equation of state inherent in the simu-

lations, at least in an asymptotic steady state of growth. A particle is defined operationally to be part of the aggregate
was demonstrated in Sec. Il B that the Barton-Bockris equasurface if it is a potential attachment site for another walking
tion is consistent with the modified DLA simulation model, particle. The number of particles in the surface is either
at least in the large-limit. For this reason was simply fit ~ counted by hand or found using a computational search tech-
as a function of to Ohm’s law,k=A/(1+r), whereAisa  nique.
fit parameter. The Ohm’s law fit fof=0.75 shown in Fig. A plot of a as a function of sticking coefficientis shown
in Fig. 14 for several drift distance$ At large x near unity,
. a approaches unity for alf, a limit consistent with dendritic

1 growth, which is comprised almost entirely of surface. These
| very high values ofx at largex are due partially to the low
mass of the aggregates and the short duration time of the

with fit parametersr* =4.808 and y=1.080 for the 2D

D. Aggregate surface mass exponent

The aggregate surface mass exponedB8] relates the
number of particles in the aggregate surfé&eto the total
massN:

INNg
T InN'

(19

a

<i2>

1.0k

0.1 g

—— 1
—¥—4

1.0

r

10.0

simulations. The exponetdecreases a8is raised andc is
lowered, andx falls rapidly whenk=<0.3 for all 6. Values of
a near 1/2 were observed in the simulations for the aggregate
growths produced under the conditions of lavand highd.

V. DISCUSSION OF AGGREGATE MORPHOLOGY

The richness in the variety of aggregate morphology in
the asymptotic growth regime is clearly displayed in the ag-
gregates grown under various simulation conditions shown

FIG. 12. Mean-square open sit$) as a function of aggregate in Figs. 2—4. The morphology of an aggregate can be char-
radius of curvature from aggregates grown over a range of stick- acterized by the geometric quantities determined by the ag-
ing coefficients at drift distance8=1 and5=4.

gregate particle position distribution. These are the most con-
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1.0 with the open site distribution as the simulation parameters
F are varied.

0.9 At high « (>0.2) and at all values o considered, the
C aggregate morphology is dendritic. Fex0.2 a crossover in

08 E morphology begins to take place for @ll The probability of

s r finding sites with large numbers of nearest-neighbor open

r sites, P(i=2) and P(i=3), decreases and the aggregate

07t growth becomes more compact. The spikiness of the aggre-
i gates diminishes and the number of interior occupied sites

06} which are surrounded by four nearest neighbor occupied
C sites,P(i =0), increases. A higl(i=0) is characteristic of

03 T Y S P S P BRI a compact aggregate growth and a |8 =0) indicates a
0 0.2 0.4 3 0.6 0.8 1.0 more dendriticlike, low-density aggregate growth.

The crossover in morphology is demonstrated by the oc-
currence of peaks in the vacancy densR§j=1), just be-
low k=0.2 for 6=0.5, 1.0, and 4.0. The asymptotic variance
of the open site distribution has a high value with a broad

venient and perhaps the most accurate characterization. TRE2K also neax=0.2. Then, at highs, the variance de-
objective here is to discuss the trends in the types of sitecr€ases rapidly as is lowered. Peaks in the variance indi-
branch density, density, and average curvature which are ap&€ Where a particular value ef occurs for a givery at
parent in the plots of aggregate growth and are quantified b{Nich & change in morphology type is starting to take place.
the geometric quantities. In particular, the open site distribu] N€ higher the variance, the broader the distribution of the
tion is a useful quantity with which to characterize the mor-YP€S Of sites in the aggregate. There is some onset for a
phology. In the asymptotic growth regime, the distribution of M0re narrow distribution characterized by a low variance
the four neighborhood patterns attains a steady value and Y¢ich is more consistent with a solidlike morphology. Near

characteristic of the particular simulation parameters emthiS crossoverc the surface mass exponeatfalls rapidly
ployed. towards 1/2 ang increases dramatically. Values afnear

Small drift distancess and high sticking coefficients 1/2 andp near unity characterize a more compact aggregate
provide ideal conditions for growing dendrites. The aggre-merphology.
gates can be described as nonoverlapping distinct dendritic
growths that have well-defined branches, are fractal-like, and VI. CONCLUSION
have low density. There are a large number of open sites
and/or defects in the aggregate growths. The average curva- The local morphology of the aggregate surface, especially
ture can be very high and the radii may even be as small d§e surface curvature, is determined solely by the drift dis-
the lattice spacing in extreme cases. At higemall changes tanced and the sticking coefficient at a preset source line
in & have little effect on morphology. However, the dendrite offset. At any fixeds, by varyingx, it is possible to obtain a
branches thicken slowly a8is increased. wide range of curvature and density. These two geometric

At large § and high , the aggregates are dendritic quantities along with others provide extensive morphological
growths that are still fractal-like and have low density. &s information relevant to both modified DLA simulation re-
increases further, these grow flatter and more dense. As sullts and actual electrodeposition experiments. Surface cur-
result, the aggregate morphology becomes less spiky ariépture and density in particular have geometric and electro-
more compact. At very largéthe branches of the individual chemical relevance. Their relationship to the simulation
dendrites thicken so much that they overlap. The morpholparameterss and « (which are related to experimental quan-
ogy that results is an amorphous dendrite with high averaggties) also reveals the influence of the electrochemical pro-
curvature. There should be some very higtior all high  cessing conditions on the growth morphology.
values ofx at which there is a transition to a dense, compact Two distinct morphological phases are present in the
morphology. These aggregates should be similar to Eden @mulated aggregates grown here: dendritic and compact.
ballistic clusterd35]. Estimates of the values of the simulation parameters at the

At low & and lowk, the branches eventually overlap into morphological crossover are obtained from the dependences
moderate-density, high-defect, moderate-curvature aggre®f mean-square open sités?) on & and «. The intrinsic
gates except at the lowestwhere some branch structure geometric quantities fractal dimensidn, density p, and
remains. Even the spikiness of aggregates growé=ab is (i) were found to be useful measures of the openness or
lower at the smallesk, and the lows aggregates may be compactness of aggregate structure. Crossover valugs of
solid enough to be considered high-defect compact aggreandD are consistent with the onset of a compact morphol-
gates. At larges and low «, the aggregate growth is a 2D ogy. The aggregate surface curvature is also correlated with
solid with defects that has high average curvature and highp, D, and{i?) through power laws which havé&dependent
density. parameters.

The crossover region from dendrite to compact morpholo- The crossover radius* and the exponent do not vary
gies can be characterized using the results already presentadich with drift whend<<1. Aggregate surface curvature is
in Sec. IV. The nature of the crossover can be discerned bgnaximal at allx when §=1. There is also a bifurcation in
analyzing the changes in the geometric quantities associatede number of available bulk transport directions wh&n

FIG. 14. Surface mass exponeatas a function of sticking
coefficientx and different drift distances.
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=1. These and other reasons suggest &at corresponds j(0) and average over the probability densRyrg,i(ry)),

to a superpoint at which a change in growth mode or growtheplacingq(r) by 1—p(r). Averages are denoted by brack-
mechanism takes place that is accompanied by a change #is:

diffusive behavior. At lows bulk diffusion is important, but _
for =1 bulk transport becomes increasingly ballistic. At (i(0)%)=(p(0)’[1—p(0)]%)
large 6 the probability that the random walk particle can

escape becomes vanishingly small and the particle attaches +2a(p(0)1—-p(0)]V[1—p(a)])- E+O(a2).
with a probability of unity. Hence bulk diffusion is insignifi- a
cant. (A3)

Morphological details controlled by local surface kinetics
may not always be well described by modified DLA simula- It can be assumed th&p(0)")=1, n>0, and so the first
tions of the type presented here. Any realistic simulationterm vanishes. The averad@(a) can be simplified if a
model of electrodeposition must take local surface kinetic$saussian distribution is assumed for the occupation prob-
into account, especially at loW (overpotentials However, abilities. The average of the gradient pfa) alone is as-
morphological pattern formation that is dominated by bulksumed to vanish. Radial symmetry is next assumed, and in
transport and which only depends on the average or groghat case the gradient gf(a) is in the direction ofa. The
features of the electrolyte electrodeposit interface can be wetiradient is symmetrized.
described by the modified DLA simulations and details of The occupation probabilitp(r) and the local density op-
morphology and morphological changes are still obtainableratorn(r) are related in a coarse senseiy)=n(r)/ng,

over a broad range of simulation parameters. whereng is a normalization factor. The density density cor-
relation function isG(r—r’)={(n(r)n(r")) [5,6,39. It fol-
) lows that
APPENDIX: MEAN-SQUARE OPEN SITES
The relationship of the mean-square open sitésto the (i2=a|V(p(0)p(a))|=a VG(a) +0(a?). (A4)
gradient of the aggregate’s density density correlation func- n(z, '

tion G(r) [5,6,39 and average aggregate radius of curvature _ )

r is demonstrated here. The mean-square open sites are related to the magnitude of
In order to find an expression for the mean-square opef€ gradient ofG(r) when evaluated at a distance equal to

sites (i2) in terms of the aggregate’s density distribution, the nearest-neighbor lattice spacing. Through their relation to

consideri(rg) =0, 1, 2, 3, which is the local representation of G(r), the geometric quantitie§i©) andD, andp also, are

the number of open sites adjacent to an occupied site at tHB€asures of the openness or compactness of an aggregate

positionr and is given at any time by growth and can be used to quantify aggregate morphology.

In particular,(i?) is a very robust statistic because it is an

3 3 exponent and is insensitive to small changes in the spatial
: _ _ _ distribution of particles in aggregate.
= = 1 . (A1
'(rs) p(rS)k§=:O atrd p(rS)k§=:O [1=p(ro]. (A It is shown here that the average surface curvafre
=1/r of the aggregates grown in the modified DLA simula-

. . 2
p(r) is the probability that the site at is occupied, and tions is related tdi) by a power law. (K) can be calcu-
q(r)=1-p(r) is the probability that it is unoccupied. In the lated approx_lmately using a statistical mechanical apprqach
discrete limit, an occupied site hagro) =1 and an open or [40]. The unit mean normal(r) to the aggregate surface is
unoccupied site hag(r)=0. The summation extends to all curl free and can be expressed as the negative of the gradient

nearest-neighbor siteg which are adjacent to the occupied Of @ mean potential. The mean local curvature is the diver-
site atr, but the sites at, may or may not be occupied. gence ofN(r) and is the source for the mean potential in

Occupied adjacent sites contribute zero to the sum, and Opgqmsson’s equatl_on. N(r) is in the d|re_ct|on of the _g.rad|_ent
adjacent sites contribute one to the sum. The variatslg of the local densny. Through a normalization condition it can
can be considered a discrete local nearest-neighbor pair cd?® Shown thatK) is approximately
relation between a given occupied site and all adjacent sites.

To evaluate the mean-square open s{ié$, the expres- (K)y= j do N-Py(r)
sion fori(rg) in Eq. (Al) is extended to a continuum where s
for convenience ¢ is chosen as the origin:

VP,(r) A5
VP,(r)-N’ (A5)
whereP,(r) is the one-particle aggregate position distribu-
tion function (effectively the local densify

1 (a ) )
i(0)=p(0) ; f dr q(r')=p(0)q(a) The mean-square open sites are

(i%)=V2a|VP,(a,0)|
+0(a?). (A2) =V2aP,(0)|V{P(a)[1+My(a,0)]}. (A6)

=p<0)(q<0>+qu<a>- .

In Eq. (AB), G(r,r')=V2P,(r,r'), whereP,(r,r') is the
Herea is the lattice spacing which is assumed to be a smaltwo-particle aggregate position distribution function and
parameter an@®(e) means on the order ef A Taylor series  M,(r,0) is the pair correlation functiop41]. Since, in a first
expansion has been made. Next, square this expression fapproximation, the mean potential and hence the mean local
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curvature do not see the correlatiddg], let M,(r,0)=0 in ~ Where AA is the area of the surface at the poat Now
this expression. The mean-square open sites are then  (i%)=Ca(K), where

(i%)=VZ2a|P,(0)VP,(a)|=V?aP;(0)N-VP,(a).

(A7) o V2P,(0) VP,(a)-N 9
If in Eq. (A5) the surface is taken at the lattice spacingnd ~AA Pi(a) -
the arguments are assumed to be constant, it follows that
VPi(a) The expression for the consta@ is simply a Gibbs-
(K)=AAPy(a)N- VP,(a)-N’ (A8) Thompson condition40] and is of order unity.
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