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Modified diffusion-limited aggregation simulation of electrodeposition in two dimensions
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~Received 9 December 1996; revised manuscript received 5 May 1997!

A modified diffusion-limited aggregation model that includes a uniform drift simulates the process of
electrodeposition. Through a systematic variation of the model’s parameters, aggregates~electrodeposits!
grown under different simulation conditions~experimental conditions of the voltage, current density, and
concentration! develop as open dendritic or as compact mossy forms. The resulting aggregate morphologies are
characterized by geometric quantities derived from the aggregate particle position distribution. Power laws
relate the geometric quantities to each other. Ohm’s law is obeyed to lowest order in the aggregate surface
curvature where the curvature is an effective conductivity. The distribution of open sites and its moments,
which are geometric quantities, are introduced.@S1063-651X~97!15908-6#

PACS number~s!: 81.10.Aj, 82.45.1z, 81.05.Bx
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I. INTRODUCTION

The growth of metal aggregates by electrodeposit
@1–4# is simulated using a modified diffusion-limited aggr
gation~DLA ! @5,6# model. The DLA model is well suited fo
simulating electrodeposit growth since it can be modified
include the electrodynamic transport processes importan
this problem. In the original DLA model a particle pursu
an unbiased random walk in the bulk and when it arrives
the surface of the growing aggregate it attaches with a p
ability of unity. A fractal or dendritic aggregate growth pa
tern results that effectively predicts certain dendritic m
phologies of electrodeposits grown in thin horizontal lay
@7–12#. A modified DLA model that includes a uniform drif
@13–16# and an adjustable attachment probability can a
simulate the growth of compact mossy aggregates. It
already been demonstrated@17–19# that modified DLA-type
simulations yield useful information regarding the evoluti
of crystal morphologies. The model investigated here sho
lead to a better understanding of the processes active du
electrodeposit growth and their effects on the resulting e
trodeposit morphologies.

In the model, bulk~liquid! electrolyte diffusion and mi-
gration are simulated using biased random walkers wh
represent the species to be deposited. The bias is chara
ized by an adjustable drift distanced, which representsuDfu,
the magnitude of the applied potential. Surface attachm
~including the reduction reaction! is included in the mode
via the introduction of an adjustable global sticking coe
cientk, which representsj /uDfu, wherej is the current den-
sity. The electrolyte bulk concentrationc is controlled by an
adjustable source line offsets @20#.

Through a systematic variation of the simulation para
etersd and k at a fixed value ofs ~thermodynamic condi-
tions of Df and j at fixed c!, the simulated electrodeposi
develop as open dendritic or as compact forms. The tra
tion from compact to dendritic morphologies is seen to ar
as a combined result of the bulk~electrolyte! diffusion and
migration and the bulk~electrolyte! aggregate~electrode-
posit! interfacial kinetics. The characterization of the mo
phologies of the aggregates is the emphasis of this st
This is done using geometric quantities of the aggregates
561063-651X/97/56~4!/4317~11!/$10.00
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are derived from the aggregate particle position distributi
These include fractal dimension, density, aggregate sur
mass exponent, average aggregate surface curvature, an
probability density of open sites, or neighborhood patte
distribution, and its moments, which will be introduced he
Both qualitative and quantitative information about ele
trodeposit growth morphologies is obtained.

The modified DLA simulation procedure in two dimen
sions ~2D! will be described in detail in Sec. II, and th
conditions under which the simulations were made will
given. In Sec. III the process of electrodeposition and
simulation model will be connected. In Sec. IV the open s
distribution will be defined and asymptotic simulation resu
will be given. These include plots of aggregate growth alo
with results for the open site distribution and other geome
quantities. A detailed discussion of the observed types
aggregate morphologies follows in Sec. V. Section VI is t
conclusion.

II. MODIFIED DLA SIMULATION

The geometry of the modified DLA simulation is show
in Fig. 1. The initial state of the simulations is a horizon
seed line of particles. A source line for new walkers is in
tially offset s lattice spacings from the seed line. It is the
displaced so as to remain at leasts above the growing ag-
gregate. A fixed source line offsets515 was used through
out these simulations and was found to adequately mo
aggregate growth from a dilute electrolyte at all drift di
tancesd lattice spacings considered here@20#.

A walking particle initiated at a random point on th
source line pursues a biased random walk in the bulk. T
walker jumps to an open site and then drifts a fixedd down-
ward toward the seed line or the aggregate surface, a
landing at an open site. Jumps from a site adjacent to
surface have the samea priori isotropic jump probability as
jumps in the bulk. Whend.1 the drift downward is com-
pleted gradually so that if the walker becomes adjacent to
aggregate surface the drift ceases.

On its arrival at an open or unoccupied site adjacent to
occupied site in the seed line or the aggregate surface,
walker attempts to attach. The probability that the walk
4317 © 1997 The American Physical Society
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joins the aggregate is determined by the sticking coeffic
k. A random numberw, 0<w<1, is generated, and ifw
<k, the walker attaches. Ifk,1, the walker may fail on its
first attempt to attach. It may then diffuse on the aggreg
surface and make repeated attempts to attach until it fin
succeeds or else returns to the bulk. If it returns to the b
it may reach a discard line, at which point it is discarded
discard line offset a fixed ten lattice spacings above
source line was adequate and consistently allowed for
loss of walkers at smalld,1. In either case of the attach
ment or the discarding of the walker, a new walker is star
and the procedure is repeated until a preset aggregate gr
height is reached.

These are small mass, small time, and small radius
gyration simulations. The lateral dimension of the aggreg
growth in the direction perpendicular to the drift directio
was fixed at 58 lattice spacings. Periodic boundary con
tions are imposed at the side boundaries. There are
phases of aggregate growth: At low growth heights there
an initial growth phase in which transients occur that is f
lowed by an approach to asymptotic growth. To compare
different simulated morphologies, it is important to ensu
that sufficient aggregation has occurred beyond the gro
transient. Growth to a height of 39 lattice spacings was
equate since beyond that aggregate morphology cha
were insignificant.

The simulation parameters used for the growth of agg
gates included fractional drift distances in the range 0,d
,1 and integral drift distances in the range 0<d<4. Loga-
rithmically spaced sticking coefficients were used in t
range 0.01<k<1. For off lattice walks, whend,1, fractal
dimension saturates and aggregate morphology appar
no longer changes much whenk<0.05. The saturation ma
represent the onset of some new morphological type o
may merely be the point of failure of the simulation. If th
latter is true, at very smalld the simulation should be modi
fied to include a locally determined sticking coefficient.

FIG. 1. Modified DLA simulation geometry in 2D illustrating
typical path of a random walker that reaches the surface.
nt

te
ly
k,

e
e

d
th

of
te

i-
o

is
-
e

e
th
-
es

-

tly

it

III. ELECTRODEPOSITION AND THE SIMULATION
MODEL

A. Bulk transport

The modified DLA simulation model and the process
electrodeposition are connected in this section. Transpo
the electrolyte bulk is related to the biased random walks
the modified DLA simulation. The drift distanced controls
the bias and represents the magnitude of the overpoten
The biased random walks satisfy the discrete Smoluchow
equation@21#.

In a uniform electric field the transport of ions in th
electrolyte bulk occurs by diffusion and migration with
constant drift velocity. The transport is described by a pa
bolic differential equation derived from the Nernst-Plan
equation@24,25#

]c

]t
5D0¹2c2vd•“c. ~1!

Here the concentrationc is assumed to be dilute andD0 is
the bulk diffusion coefficient. The constant drift velocit
wherevd5uvdu is proportional to the implied force

vd5mabsquEu5mabsqU2 Df

l U, ~2!

whereq is the charge on the ion,mabs is the absolute ionic
mobility, and l is the cell size.

Migration and diffusion of an ion in the electrolyte bul
are modeled in the modified DLA simulations by a bias
random walk. The bias is characterized by the drift distan
d. The probability that a walker undergoing a biased rand
walk can be found at the locationr k after k steps is@16#

U~r k ,kt!5
1

c ( U„r k21 ,~k21!t…. ~3!

The summation in Eq.~3! extends to all occupied sites a
locationsr k21 from which by a single jump and drift it is
possible to arrive at the locationr k in one step wherer k
5r k211a1d. The vectora is an unbiased random wal
with equala priori jumping probability to any of the four
corners of a square wherer k21 is at the center of the square
This square is oriented diagonal to the axes of the underly
square lattice which has lattice spacinga, but the center and
the corners of the square do not have to coincide with lat
points. The vectord is the uniform drift superimposed o
each step of the random walk and is due to the drift veloc
imposed by a uniform external electric field in a timet,
which is the mean time between collisions and will be tak
to be one Monte Carlo step. The constantc is a normaliza-
tion factor.

A connection can to be made to Eq.~1! by expanding Eq.
~3! in a Taylor series. Such an expansion is valid so long
max(a,d) is smaller than the radius of convergence of t
series. On evaluating the limits ast and a go to zero, the
Smoluchowski equation for the case of a constant, spati
independent force results:
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]U

]t
5D0¹2U2vd•“U, ~4!

where the timet5kt. The diffusion coefficientD0 and mag-
nitude of the drift velocityvd are @16#

D05 lim
t→0
a→0

a2

2t
, ~5!

vd5 lim
t→0
a→0

d

t
. ~6!

The drift distance simulation parameterd will be propor-
tional to vd , which is proportional to an externally impose
uniform electric field and, hence, to the applied potential

Whether the diffusive term or the migration term is dom
nant in the Smoluchowski equation depends on the rela
magnitude ofvd andD0 . The Peclet number@26# is defined
as

Pe5
vd

D0
a5

2d

a
. ~7!

Bulk diffusion will still be important in comparison to drif
providedd<a/2 or Pe<1. As d is increased abovea/2, the
transport becomes increasingly more and more ballistic.
long asd,a, the probability is nonzero for escape to a d
tance away from the aggregate surface limited only by
size of the system. Whend approaches the lattice spacin
a andPe approaches the value 2, a bifurcation in the num
of available transport directions occurs from one direction
two directions. Whend>a, the walker can only move in a
direction toward the aggregate surface and the attachme
deterministic.

B. Attachment kinetics

The surface kinetics, reduction reaction, and attachm
in the electrodeposition process can be described by a w
known macroscopic electrochemical equation due to Ba
and Bockris@1–3#. In this case, the sticking coefficientk
represents the ratio of the current density to the magnitud
the overpotential. An elastic boundary condition@22,23# of
the Smoluchowski equation is equivalent to the Barto
Bockris equation in a certain limit.

The overpotentialh5Df2Dfe is the difference be-
tween the electrode potentialDf and the equilibrium elec-
trode potentialDfe for the reduction reaction

M 11e2→M , ~8!

whereM 1 is a univalent metal ion,e2 is an electron, and
M is the reduced metal atom. In the modified DLA simu
tions Dfe50 because the reaction occurs at drift distan
d50. The convention that is observed here is thath,0 is
associated withj .0, wherej is the cathodic current density
The Barton-Bockris equation is the sum of the overpotent
due to activation, diffusion, and the Kelvin effect and is
e
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Fh

NkBT
5

j

j 0
S 11

r

D0Fc0 / j 0
D1

2Vm /NkBT

r
g~h,r !.

~9!

Herer is the electrodeposit surface radius of curvature,c0 is
the bulk concentration in the electrolyte,j 0 is the exchange
current density,Vm is the molar volume of adsorbed ions
the electrodeposit surface, and the surface free energy ig.

The reduction reaction of Eq.~8! is an activated process
and the first term in Eq.~9! is due to the activation overpo
tential where the dependence ofj on h is given by a small
argument expansion of the Butler-Volmer equati
@24,27,28#. The second term in Eq.~9! is due to the diffusion
~or concentration! overpotential which occurs because the
is a concentration gradient at the surface of the cathode
to depletion of the reacting metal ion@24,28#. According to
Nernst’s law, the concentration gradient gives rise to
overpotential. The radius of curvature,r , is an effective re-
sistivity and the diffusion and activation overpotentials co
bine to form an equation that is basically Ohm’s law.

The third term in Eq.~9! is due to the overpotential from
the Kelvin effect@29,30#. At the tips of protrusions, diffusion
is spherical and a shorter diffusional path exists between
surface and outer plane of the diffusion layer and deposi
is therefore faster than at the flat part of the surface o
depressions. This leads to an accentuation of the potenti
small radii on the electrodeposit surface@1–3#. If a potential
is imposed across the surface, the surface free energy
pends on the magnitude of the applied potential@24#. The
curvature of a highly curved surface may also affect the s
face free energy@29–32#. Equation~9! is valid at smallh
~i.e., in the linear regime of the Butler-Volmer equation!.

A reaction that is diffusion controlled has a rate that
limited by the arrival of ions at the electrodeposit surface
can be assumed that under this condition the total stick
probability of the ions undergoing reduction and attachm
to the electrodeposit surface is unity@33,34#. This will be the
case whenj is greater than or equal to the diffusion-limite
current densityj L5D0Fc0 /L, whereL is the diffusion layer
thickness. When thej , j L , a sticking coefficient can be de
fined as the ratioK5 j / j L , but if j . j L , thenK51.

The sticking coefficientK has a physical counterpart i
the ratio j /uhu. Whenh50, thenj 50 andL diverges in the
sense that the diffusion layer extends throughout the bulk
the electrolyte and is only limited in extent by the size of t
system. Ash is increased from zero,L decreases monotoni
cally @16#. Now K5C j /uhu, where C is a proportionality
constant. The simulated sticking coefficientk will be propor-
tional to K.

In the modified DLA simulations, the probabilityU(r ,t)
at locationr after a timet will be a solution of the Smolu-
chowski equation, Eq.~4!, subject to given boundary cond
tions. The sticking coefficientK for attachment to the aggre
gate surface @5,6,22,23# is included in the boundary
condition by imposing a mixed or elastic boundary conditi
at the aggregate surface. For this case, with 0<K<1, the
boundary condition is@23#

KUus1~12K !$PecosuUus2an•“Uus%50. ~10!
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FIG. 2. Aggregate growth at a growth heigh
n539. The drift distances ared50.0 ~left! and
d50.25 ~right!.
a
a
th

b
a
e
al
in
e

se
tic
th

ing

ter
met-

od
ac-
the
u-

e-
he

-

wth.
-
oc-
rns

at-
Here u is the angle between the normal to the aggreg
surface and the drift direction, which are not necessarily p
allel on an arbitrarily shaped boundary. In general, over
boundary layer,Pe will be nonzero.

Equation~10! can be rewritten as

l

a
5

Uus
an•¹Uus

5
1

Pecosu1K/~12K !
. ~11!

Here the inverse of the logarithmic derivative of the pro
ability at the aggregate surface has introduced an adjust
length scalel @5,6#, which will be on the same scale as th
radius of curvature of the aggregate surface. When the w
ing particle becomes adjacent to the surface of the grow
aggregate in the modified DLA simulations, the drift ceas
andvd and, hence,Pe are zero. AtPe50, Eq. ~11! is

1

K
5

l

a
11. ~12!

This expression is essentially the Ohm’s law limit of Eq.~9!,
which includes the resistivity associated with the proces
of activation and diffusion. To lowest order, the elas
boundary condition ensures that Ohm’s law is obeyed on
aggregate surface.
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IV. GEOMETRIC QUANTITIES OF THE AGGREGATES

A. Introduction

Aggregate growths are shown in Figs. 2–4. The stick
coefficientk and drift distanced vary over the plots. Details
of the aggregate morphology will be discussed af
asymptotic simulation results are presented for some geo
ric quantities.

The probability density of open sites, or neighborho
pattern distribution, and its moments are useful for char
terizing the morphologies of the aggregates grown in
modified DLA simulations. The number of open or unocc
pied sites that are adjacent to an occupied site atrS , S
51,2, . . . ,N, in the aggregate,i (rS)50,1,2,3, is a discrete
random variable which offers a well-defined statistical d
scription of the smallest clusters of particles from which t
aggregates can be built. In 2D on a square latticei (rS)50
when the occupied site atrS is fully surrounded by nearest
neighbor occupied sites. The maximum value ofi (rS)53
because the site must be connected to the aggregate gro
Each of the four values ofi (rS) is associated with a particu
lar neighborhood pattern that can develop about a given
cupied site in the aggregate. The four neighborhood patte
in 2D are shown in Fig. 5.

The reduced open sites probability densityPn( i ), i
50,1,2,3, is the distribution of the four neighborhood p
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FIG. 3. Aggregate growth at a growth heigh
n539. The drift distances ared50.5 ~left! and
d50.75 ~right!.
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terns for the entire aggregate at given timen. The expecta-
tion values ofPn( i ) which are most useful for examining th
morphology of aggregates are the mean open sites

^ i &n5(
i 50

3

iPn~ i !, ~13!

the mean square open sites

^ i 2&5(
i 50

3

i 2Pn~ i !, ~14!

and the variance of the open sites distribution

var~ i !n5^ i 2&n2^ i &n
2. ~15!

Properties of the mean square open sites^ i 2& are given in the
Appendix. The valuê i 2&51 will be taken to distinguish
between dendritic and compact morphological phases.
observed power laws relatinĝi 2& to other geometric quan
tities then determine certain morphological crossover val
of those quantities. Although the choice^ i 2&51 is somewhat
arbitrary, the observed crossover fractal dimension
crossover density are consistent with the onset of a com
morphology.

The standard deviation of the open sites distribution
s( i ) where var(i )5s( i )2. In Fig. 6, s( i ) is plotted as a
function of aggregate growth height at a drift distanced
he

s

d
ct

s

51.0 for various sticking coefficientsk. This figure shows
s( i ) for single aggregates and is a typical example of
behavior ofs( i ) with the simulation parameters. Initially
the monolayer seed line is flat so that the aggregate is m
up solely of vacancy sites withP( i 51)51 andP( i )50, i
50,2,3. Initially, ^ i & and ^ i 2& are unity ands( i ) has an
initial value of zero.

Figure 6 shows the occurrence of two phases of aggre
growth. At low growth heights~less than ten lattice spacing
in this example!, there is an initial growth phase in whic
transients occur that is followed by an approach
asymptotic growth. The overshoots in thes( i ) transients are
nearly uniform in their magnitude and duration for the sim
lation parameters considered. These reflect the developm
of a characteristic rough morphology as the flat initial co
dition is being forgotten. The oscillations that occur after t
initial growth phase damp out on averaging over several
gregates. By a growth height of 39 lattice spacings,s( i ) has
reached an asymptotic value for almost all sets of simula
parameters considered. The fractal dimension and^ i 2&, con-
sidered as functions of growth height, also reach asympt
values at this stage, except perhaps at the highestk. Simula-
tions with much larger geometries confirm that the gro
morphology of the aggregates changes little with further
creases in their mass or radius of gyration. Results obta
at this growth height appear to be adequate for the anal
of the asymptotic interrelationships among and between
geometric quantities and the simulation parameters.
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FIG. 4. Aggregate growth at a growth heigh
n539. The drift distances ared51.0 ~left! and
d54.0 ~right!.
s

re

lie

rs

e
g-

and

e ffi-
B. Mean-square open sites, fractal dimension, and density

In Fig. 7, the mean-square of the open sites^ i 2& is shown
as a function of sticking coefficientk at various drift dis-
tancesd. The data fork<0.3 are used to estimate the cros
over sticking coefficientk* , found when^ i 2&51, by inter-
polation ford>0.75 and by extrapolation ford<0.5. In Fig.
8, k* distinguishes the morphological phases of the agg
gates. Asd goes to zero, the estimatedk* .0, indicating that
a 2D solid could be grown even in the absence of an app
electric field. Ford<1, k* is a nearly cubic function ofd
and then ford.1 it slowly increases. In the limitd goes to
infinity, k* may approach unity and Eden or ballistic cluste
@35# should result.

FIG. 5. Neighborhood patterns in 2D. The open sites variabl
i .
-

-

d

The fractal dimensionD is estimated statistically becaus
of the relatively low mass and radius of gyration of the a
gregates. The distribution ofD is obtained for a very large
sample of rectangular boxes that have a range of areas
locations, and it is sharply peaked. The averageD correlates
well with D obtained from plotting lnN(R) as a function of
lnR whereN is the mass of the aggregate. The densityr of
an aggregate is calculated from the known values ofN and
D.

is
FIG. 6. Standard deviation of the open sites distributions( i ) as

a function of aggregate growth height and various sticking coe
cientsk. The drift distanced51.0.
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The mean-square of the open sites^ i 2& is shown as a
function of 22D in Fig. 9. The aggregates represented in
plot were grown over a full range ofd and k. The log-log
plot is essentially linear except possibly at the lowestD and
indicates the power law

^ i 2&5F ~22D !

~22D* !G
s

. ~16!

The crossover fractal dimensionD* is found when̂ i 2&51.
The fit parameters for the full data set areD* 51.938 and
s50.6934. A log-log plot of̂ i 2& as a function of 12r is
very similar to the plot of̂ i 2& versus 22D, indicating the
power law

^ i 2&5F ~12r!

~12r* !G
z

. ~17!

The crossover densityr* 50.8189 is found when̂ i 2&51
and the exponentz50.7669. The values of these fit param
eters are roughly constant over the entire simulation par
eter set.

A two-dimensional defect-free solid~i.e., no voids! of ar-
bitrary nonfractal shape withD5d52 hasr51, where the
density has units of the number of particles per lattice sp

FIG. 8. The crossover sticking coefficientk* , shown as a func-
tion of drift distanced, separates the dendrite and compact morp
logical phases.

FIG. 7. Mean-square open sites^ i 2& as a function of sticking
coefficientk and various values of the drift distanced.
e

-

c-

ing squared. The observedD* andr* are near these values
The DLA resultD51.66 obtained withk51 andd50 gives
a minimum value ofr50.3 in the simulation results with
fairly low-mass aggregates.

Plots of r as a function ofk at constantd are shown in
Fig. 10. Two trends in the variation ofr are apparent in the
plots. First, r increases systematically asd increases, but
when d.1, r increases very slowly withd. Second, ask
decreases,r increases. Sincek5c j /uhu, this means that a
any constant overpotential~drift distance! the density will be
highest at the lowest current densities.

C. Average aggregate surface curvature

The average curvature 1/r is a simple average of the loca
curvatures of surface sections of aggregates grown ov
range of random number seeds. Lagrange interpolating p
nomials@36# are fit to the surface sections and then used
estimate their local curvatures@37#. For oblate parabolic sur
face sections, relatively accurate local curvature estima
are obtained from three-point fits to the width and height
the surface section.

The variation of mean-square open sites^ i 2& with r was
examined for both 2D hemispherical solids with densityr
51 and for simulation results with varying drift distanced
and sticking coefficientk. The following power law was
found relating^ i 2& to r :

-

FIG. 9. Mean-square open sites^ i 2& as a function of fractal
dimension 22D from aggregates grown over a range of sticki
coefficientsk and three different values of the drift distanced.

FIG. 10. Densityr as a function of sticking coefficientk and
different drift distancesd.
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^ i 2&5S r *

r D x

, ~18!

with fit parametersr * 54.808 andx51.080 for the 2D
hemispherical solids. The crossover radiusr * is found when
^ i 2&51. A linear relationship between̂i 2& and 1/r is pre-
dicted in the Appendix. A model calculation that assume
linear falloff of the density in the expression for^ i 2&, Eq.
~A4!, gives the resultr * 54.828.

Log-log plots of^ i 2& as a function ofr are shown in Fig.
11 for d,1 and Fig. 12 ford>1 over a range ofk. The
simulation results indicate the same power law as in
~18!. The power-law-fit parameters are ford,1 ~Fig. 11,
overall data set! r * 533.133 andx50.4236, ford51 ~Fig.
12! r * 54.702 andx51.094, and ford54 ~Fig. 12! r *
59.050 andx51.485. Whend51, the results forr * andx
are consistent with those for 2D hemispherical solids.

In the modified DLA simulations, the average radiir of
the aggregate surfaces seem to be fixed byd andk through
some quasiequilibrium equation of state inherent in the sim
lations, at least in an asymptotic steady state of growth
was demonstrated in Sec. III B that the Barton-Bockris eq
tion is consistent with the modified DLA simulation mode
at least in the large-r limit. For this reasonk was simply fit
as a function ofr to Ohm’s law,k5A/(11r ), whereA is a
fit parameter. The Ohm’s law fit ford50.75 shown in Fig.

FIG. 11. Mean-square open sites^ i 2& as a function of aggregat
radius of curvaturer from aggregates grown over a range of stic
ing coefficients at drift distancesd,1.

FIG. 12. Mean-square open sites^ i 2& as a function of aggregat
radius of curvaturer from aggregates grown over a range of stic
ing coefficients at drift distancesd51 andd54.
a

.

-
It
-

13 is good. This is a low-d fit that includes some large-r data
andA is of order unity. The Ohm’s law fit ford54.0 is very
bad. Instead, the fit ford54.0 shown in Fig. 13 is to a
modified Barton-Bockris equation that includes surface-f
energy corections and is a cubic function ofr . Ohm’s law
may be adequate for the low-d data where there may b
complete activation and diffusion control. At the largerd,
transport is ballistic, the Kelvin effect is important, and t
reduction reaction is the rate limiting step.

D. Aggregate surface mass exponent

The aggregate surface mass exponenta @38# relates the
number of particles in the aggregate surfaceNS to the total
massN:

a'
lnNs

lnN
. ~19!

A particle is defined operationally to be part of the aggreg
surface if it is a potential attachment site for another walk
particle. The number of particles in the surface is eith
counted by hand or found using a computational search te
nique.

A plot of a as a function of sticking coefficientk is shown
in Fig. 14 for several drift distancesd. At largek near unity,
a approaches unity for alld, a limit consistent with dendritic
growth, which is comprised almost entirely of surface. The
very high values ofa at largek are due partially to the low
mass of the aggregates and the short duration time of
simulations. The exponenta decreases asd is raised andk is
lowered, anda falls rapidly whenk<0.3 for alld. Values of
a near 1/2 were observed in the simulations for the aggreg
growths produced under the conditions of lowk and highd.

V. DISCUSSION OF AGGREGATE MORPHOLOGY

The richness in the variety of aggregate morphology
the asymptotic growth regime is clearly displayed in the a
gregates grown under various simulation conditions sho
in Figs. 2–4. The morphology of an aggregate can be ch
acterized by the geometric quantities determined by the
gregate particle position distribution. These are the most c

FIG. 13. Fits of the modified DLA simulation data to Ohm’s la
at a drift distanced50.75 and to a modified Barton-Bockris equ
tion at d54.0. The radius of curvature isr and k is the sticking
coefficient.
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venient and perhaps the most accurate characterization.
objective here is to discuss the trends in the types of s
branch density, density, and average curvature which are
parent in the plots of aggregate growth and are quantified
the geometric quantities. In particular, the open site distri
tion is a useful quantity with which to characterize the m
phology. In the asymptotic growth regime, the distribution
the four neighborhood patterns attains a steady value an
characteristic of the particular simulation parameters e
ployed.

Small drift distancesd and high sticking coefficientsk
provide ideal conditions for growing dendrites. The agg
gates can be described as nonoverlapping distinct dend
growths that have well-defined branches, are fractal-like,
have low density. There are a large number of open s
and/or defects in the aggregate growths. The average cu
ture can be very high and the radii may even be as sma
the lattice spacing in extreme cases. At highk small changes
in d have little effect on morphology. However, the dendr
branches thicken slowly asd is increased.

At large d and high k, the aggregates are dendrit
growths that are still fractal-like and have low density. Asd
increases further, these grow flatter and more dense. A
result, the aggregate morphology becomes less spiky
more compact. At very larged the branches of the individua
dendrites thicken so much that they overlap. The morph
ogy that results is an amorphous dendrite with high aver
curvature. There should be some very highd for all high
values ofk at which there is a transition to a dense, comp
morphology. These aggregates should be similar to Ede
ballistic clusters@35#.

At low d and lowk, the branches eventually overlap in
moderate-density, high-defect, moderate-curvature ag
gates except at the lowestd where some branch structur
remains. Even the spikiness of aggregates grown atd50 is
lower at the smallestk, and the low-d aggregates may b
solid enough to be considered high-defect compact ag
gates. At larged and low k, the aggregate growth is a 2D
solid with defects that has high average curvature and h
density.

The crossover region from dendrite to compact morpho
gies can be characterized using the results already prese
in Sec. IV. The nature of the crossover can be discerned
analyzing the changes in the geometric quantities assoc

FIG. 14. Surface mass exponenta as a function of sticking
coefficientk and different drift distancesd.
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with the open site distribution as the simulation paramet
are varied.

At high k (.0.2) and at all values ofd considered, the
aggregate morphology is dendritic. Fork<0.2 a crossover in
morphology begins to take place for alld. The probability of
finding sites with large numbers of nearest-neighbor op
sites, P( i 52) and P( i 53), decreases and the aggrega
growth becomes more compact. The spikiness of the ag
gates diminishes and the number of interior occupied s
which are surrounded by four nearest neighbor occup
sites,P( i 50), increases. A highP( i 50) is characteristic of
a compact aggregate growth and a lowP( i 50) indicates a
more dendriticlike, low-density aggregate growth.

The crossover in morphology is demonstrated by the
currence of peaks in the vacancy density,P( i 51), just be-
low k50.2 ford50.5, 1.0, and 4.0. The asymptotic varian
of the open site distribution has a high value with a bro
peak also neark50.2. Then, at highd, the variance de-
creases rapidly ask is lowered. Peaks in the variance ind
cate where a particular value ofk occurs for a givend at
which a change in morphology type is starting to take pla
The higher the variance, the broader the distribution of
types of sites in the aggregate. There is some onset f
more narrow distribution characterized by a low varian
which is more consistent with a solidlike morphology. Ne
this crossoverk the surface mass exponenta falls rapidly
towards 1/2 andr increases dramatically. Values ofa near
1/2 andr near unity characterize a more compact aggreg
morphology.

VI. CONCLUSION

The local morphology of the aggregate surface, especi
the surface curvature, is determined solely by the drift d
tanced and the sticking coefficientk at a preset source line
offset. At any fixedd, by varyingk, it is possible to obtain a
wide range of curvature and density. These two geome
quantities along with others provide extensive morphologi
information relevant to both modified DLA simulation re
sults and actual electrodeposition experiments. Surface
vature and density in particular have geometric and elec
chemical relevance. Their relationship to the simulati
parametersd andk ~which are related to experimental qua
tities! also reveals the influence of the electrochemical p
cessing conditions on the growth morphology.

Two distinct morphological phases are present in
simulated aggregates grown here: dendritic and comp
Estimates of the values of the simulation parameters at
morphological crossover are obtained from the dependen
of mean-square open sites^ i 2& on d and k. The intrinsic
geometric quantities fractal dimensionD, density r, and
^ i 2& were found to be useful measures of the opennes
compactness of aggregate structure. Crossover valuesr
and D are consistent with the onset of a compact morph
ogy. The aggregate surface curvature is also correlated
r, D, and^ i 2& through power laws which haved-dependent
parameters.

The crossover radiusr * and the exponentx do not vary
much with drift whend,1. Aggregate surface curvature
maximal at allk when d51. There is also a bifurcation in
the number of available bulk transport directions whend
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51. These and other reasons suggest thatd51 corresponds
to a superpoint at which a change in growth mode or gro
mechanism takes place that is accompanied by a chang
diffusive behavior. At lowd bulk diffusion is important, but
for d>1 bulk transport becomes increasingly ballistic.
large d the probability that the random walk particle ca
escape becomes vanishingly small and the particle atta
with a probability of unity. Hence bulk diffusion is insignifi
cant.

Morphological details controlled by local surface kineti
may not always be well described by modified DLA simu
tions of the type presented here. Any realistic simulat
model of electrodeposition must take local surface kine
into account, especially at lowd ~overpotentials!. However,
morphological pattern formation that is dominated by bu
transport and which only depends on the average or g
features of the electrolyte electrodeposit interface can be
described by the modified DLA simulations and details
morphology and morphological changes are still obtaina
over a broad range of simulation parameters.

APPENDIX: MEAN-SQUARE OPEN SITES

The relationship of the mean-square open sites^ i 2& to the
gradient of the aggregate’s density density correlation fu
tion G(r ) @5,6,39# and average aggregate radius of curvat
r is demonstrated here.

In order to find an expression for the mean-square o
sites ^ i 2& in terms of the aggregate’s density distributio
consideri (r s)50, 1, 2, 3, which is the local representation
the number of open sites adjacent to an occupied site a
position r s and is given at any time by

i ~r s!5p~r s!(
k50

3

q~r k!5p~r s!(
k50

3

@12p~r k!#. ~A1!

p(r ) is the probability that the site atr is occupied, and
q(r )512p(r ) is the probability that it is unoccupied. In th
discrete limit, an occupied site hasp(r s)51 and an open or
unoccupied site hasp(r )50. The summation extends to a
nearest-neighbor sitesr k which are adjacent to the occupie
site at r s , but the sites atr k may or may not be occupied
Occupied adjacent sites contribute zero to the sum, and o
adjacent sites contribute one to the sum. The variablei (r s)
can be considered a discrete local nearest-neighbor pair
relation between a given occupied site and all adjacent s

To evaluate the mean-square open sites^ i 2&, the expres-
sion for i (r s) in Eq. ~A1! is extended to a continuum wher
for conveniencer s is chosen as the origin:

i ~0!5p~0!
1

a Ea
dr q~r 8!5p~0!q~a!

5p~0!S q~0!1a“q~a!•
a

aD1O~a2!. ~A2!

Herea is the lattice spacing which is assumed to be a sm
parameter andO(e) means on the order ofe. A Taylor series
expansion has been made. Next, square this expressio
h
in

es

n
s

ss
ell
f
le

c-
e

n
,
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en

or-
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ll

for

i (0) and average over the probability densityP„r s ,i (r s)…,
replacingq(r ) by 12p(r ). Averages are denoted by brac
ets:

^ i ~0!2&5^p~0!2@12p~0!#2&

12a^p~0!2@12p~0!#“@12p~a!#&•
a

a
1O~a2!.

~A3!

It can be assumed that^p(0)n&51, n.0, and so the first
term vanishes. The averageO(a) can be simplified if a
Gaussian distribution is assumed for the occupation pr
abilities. The average of the gradient ofp(a) alone is as-
sumed to vanish. Radial symmetry is next assumed, an
that case the gradient ofp(a) is in the direction ofa. The
gradient is symmetrized.

The occupation probabilityp(r ) and the local density op
eratorn(r ) are related in a coarse sense byp(r )5n(r )/n0 ,
wheren0 is a normalization factor. The density density co
relation function isG(r2r 8)5^n(r )n(r 8)& @5,6,39#. It fol-
lows that

^ i 2&5au“^p~0!p~a!&u5aU“G~a!

n0
2 U1O~a2!. ~A4!

The mean-square open sites are related to the magnitud
the gradient ofG(r ) when evaluated at a distance equal
the nearest-neighbor lattice spacing. Through their relatio
G(r ), the geometric quantitieŝi 2& and D, andr also, are
measures of the openness or compactness of an aggr
growth and can be used to quantify aggregate morpholo
In particular,^ i 2& is a very robust statistic because it is a
exponent and is insensitive to small changes in the spa
distribution of particles in aggregate.

It is shown here that the average surface curvature^K&
51/r of the aggregates grown in the modified DLA simul
tions is related tô i 2& by a power law. ^K& can be calcu-
lated approximately using a statistical mechanical appro
@40#. The unit mean normalN~r ! to the aggregate surface
curl free and can be expressed as the negative of the gra
of a mean potential. The mean local curvature is the div
gence ofN~r ! and is the source for the mean potential
Poisson’s equation.N~r ! is in the direction of the gradien
of the local density. Through a normalization condition it c
be shown that̂K& is approximately

^K&5E
s
ds N•P1~r !

“P1~r !

“P1~r !•N
, ~A5!

whereP1(r ) is the one-particle aggregate position distrib
tion function ~effectively the local density!.

The mean-square open sites are

^ i 2&5V2au“P2~a,0!u

5V2aP1~0!u“$P1~a!@11M2~a,0!#%u. ~A6!

In Eq. ~A6!, G(r ,r 8)5V2P2(r ,r 8), where P2(r ,r 8) is the
two-particle aggregate position distribution function a
M2(r ,0) is the pair correlation function@41#. Since, in a first
approximation, the mean potential and hence the mean l
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curvature do not see the correlations@40#, let M2(r ,0)50 in
this expression. The mean-square open sites are then

^ i 2&5V2auP1~0!“P1~a!u5V2aP1~0!N•“P1~a!.
~A7!

If in Eq. ~A5! the surface is taken at the lattice spacinga and
the arguments are assumed to be constant, it follows tha

^K&5DAP1~a!N•

“P1~a!

“P1~a!•N
, ~A8!
-

-
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e
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.

w

.

se
where DA is the area of the surface at the pointa. Now
^ i 2&5Ca^K&, where

C5
V2P1~0!

DA

“P1~a!•N

P1~a!
. ~A9!

The expression for the constantC is simply a Gibbs-
Thompson condition@40# and is of order unity.
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